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Formulas (3.2) show that when the parameter a tends to zero, the limiting expressions 
for an almost ideal gas pass smoothly to the cortesponding expre.uions for the ideal gas. 
Thus, by taking the heat conduction into account we can obtain not only a finite value 

for the temperature at the center of explcsion, but also a correct limiting passage from 
the imperfect to the ideal gas case. Corrections to the solution of the poblem of explo- 

sion in an ideal thermally conducting gas caused by the nonideal character of the me- 
dium can be easily obtained from the system (3.1). 
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We investigate the statistical characteristics of trajectories of a (scalar, vector, tensor) 

random field u generated by independently distributed sources. Formulas obtained for 

the trajectcry of a component u of such a field along an arbitrary straight line zo, de- 

fine the mean values of the following characteristics (see Fig. 1) : I+ = 1+ (T) and I = 
r (r) are the distances between two neighboring upcrossings and downcrossings of the 

level 7; t = & (t) is the duration of an up- 

wards excursion across z , while h+ = A+ Ix) 
and A--= A- IX) are distances separating the 
consecutive points on the trajectory posses- 

sing the same first order derivative with 
respect to x , with positive and negative 

ctnvature, respectively. The formulas differ 
from those given by the general mathemati- 
cal theory of trajectcries of stationary ran- 

Fig. 1 
dom processes; they can be applied in prac- 
tice to obtain the characteristics of traject- 
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The mean number of downcrossings p- (T) of the level r is defined in the same man- 
ner. The total number of crossings of the level z per unit length is CI (T) = P+ (Z) -!- 
P- (G 

For the majority of real fields the two-dimensional distribution cp (g, z, I) is unknown. 

If the field o is generated by independently and randomly distributed sources and the 

action exerted on the point x,, by a source situated at the point x is defined by the func- 

tion 9 (x0, x), then the characteristic function Y (u,, IL*, I) of the distribution q~ (g, 2, r) 
is determine-d by the following expression analogous to that given in p - 41: 

lllY(u1,uz,1):. --,o (I--c~s~~[i/~~s(O,x)+iuaS(z,x)]}dx 
c (2) s 

where p is the mean source density, o and 1 are points on the observer line (along 

which we direct the z,-axis) and the integration is performed over the space x. The 

dimensionality o- x depends on the type of sources. Writing q (y, z, 1) in terms of the 

characteristic function (2) and passing to the limit in (1) we obtain, after the integration. 

P’ 6) = $ p 
s 

Sl (0, x) q [r - s (0, x)] ax (3) 

Sl(z0, x) = as@,, x)!r,rc 

where 9 (g) is the density of distribution of probabilities of u in an arbitrary point, and 
the integration is performed over the region of x for which S, (0, x) > 0. The mean 

number of downcrossings is JJ- (z) = p+ (t). Unlike the formulas given in [I, 41, formula 
(3) defines the mean number of crossings in terms of the one-dimensional distribution 

of values and the action of the source. Applying (3) to the trajectory of the derivative 

u1 (zo) = &J (zo)/& we obtain the following expression: 

where ‘pl (t) denotes the distribution density of the probabilities of o1 at any point, and 
the integration is performed over the region of x for which S, (0, x) > 0 

For the ergodic random fields the ratio of the sum of the lengths of the trajectory seg- 
ments Z & (T) on which o > z to the total length L , is connected [l] with the one- 

dimensional distibution function by the exmession 

l- s -ca 

(5) 

Relations (5) and (3) together define <E (~1). 
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We illustrate the application of the formulas (3) - (5) with a practical example, in 

which we determine the characteristics of the trajectories of the components u19 and 

I I 
0.5 z/m 

Fig. 2 

usa of an internal stress field u generated 
by parallel independently distributed dislo- 

cations. The distributions cp (y) and ~1 (t) 

for this field are given in D, 53. The z,-axis 
is directed along the line of dislocations, 
S = S (to, zl, zs) [S] where z. is counted 

along the observer line and p denotes the 

mean dislocation density in the (z,, q.) - 

plane. When the mean number of crossings 
is being determined, the integral (3) can, in 

this case, only be obtained approximately. 
Figure 2 depicts the following relations 

l- p+ ( > $&j- [P’ (O))-l = jl - - ( ) & ’ 
p+ (0) = 0.29 p”. 

z-<E(~)>rce(o~,1-‘=is(~), <e(O,,=i,7P-“~ 

for the component a,, of a field generated by randomly distributed helical dislocations, 

where D = ([a,,la). 
The correctness of the above computations was checked by constructing a model of 

the field u of1 000 screw dislocations parallel to the z 3-axis and situated on a 1 xl area 

on the ( 21 z, )-plane. Figure 2 shows the comparison of the relations fI (r/)/z) and 

fa (z/ 1/ 2L)) computed using the formulas (3) and (5) (white circles) with those obtained 

from the model (black dots). The modelling data give u+ (0) = 0.28 P”* and <& (0)) = 
1 g p+ 

The following expression is obtained for (h+ (x)) 

[cl”+ (%))I-1 = 
ZP 1/r (Ca + xa)‘,* { [(CZ + x4’/’ + xl!‘? + [(c? + ,p - xl”‘} 

where A = G bl(2n k), G is the shear modulus of elasticity, b is the Burgers dislocation 
vector ; k = 1 and a = 0.6 for the helical dislocations (the a,, component); k = 1 -Y 
and cc = 1.05 for the edge dislocations (the q, component); y is the Poisson’s ratio 
and c = IT A p. 

The authors thank V. P. Nosko for assesment of this paper. 
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